
On a different approach to the bi-Hamiltonian structure of higher-order water-wave equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L591

(http://iopscience.iop.org/0305-4470/23/12/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 14:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) L591-LS97. Printed in the UK 

LE'ITER TO THE EDITOR 

On a different approach to the bi-Hamiltonian structure of 
higher-order water-wave equations 

Sasanka hrkai t  and A Roy Chowdhury 
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta 
700 032, India 

Received 25 August 1989 

Abstract. Conservation laws and the bi-Hamiltonian structure of higher-order water-wave 
equations are obtained by a method different from the usual approach of symmetry analysis. 
The method is based on the technique of Fourier analysis and small amplitude expansion. 
Some comments are made about the symmetries of the equation. The recursion operator 
A is then constructed from the two symplectic operators and it is explicitly verified that it 
is both a strong operator and a hereditary OM. 

Properties of nonlinear integrable systems can be analysed in much detail if the 
bi-Hamiltonian structure and associated conservation laws are known [ 13. Usually 
such properties can be deduced if the Lax pair and Lie-Backlund symmetries are 
known [2]. Many nonlinear equations have already been studied from this point of 
view. Here we have shown that it is possible to develop a different approach to extract 
these properties without the use of the Lax pair. The equation under consideration is 
the higher-order water-wave equation of which the Boussinesq equation is a special 
case [3]. Our approach is that of small amplitude expansion and Fourier expansion. 
The technique of Fourier expansion has already been utilised by Chen et a1 [4] and 
others in obtaining the alternative Lax pair for some equations such as Kdv, M K d v  etc 
PI. 

The equation under consideration can be written as 
U, +(uu) ,  +fun, = 0 

U( + U, + vu, = 0. 

P, = K(u, U )  
If we denote the vector (,") as P then (1) can be written as 

where K is also a vector, 

Now let us linearise (2) by setting U + U + EU', U + U + ET'; then if the vector (::) is 
denoted by R, we get 

where the matrix K'(u,  U )  is obtained from the Frechet derivative of K(u, U): 
RI = K'(u, u ) R  (4) 

-au -$a3-au ( -a -au 
K'(u ,  U)= ( 5 )  
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We assume that (U,  U) E M = Cl”’ ( R ’ ,  R 2 )  a smooth space of an I-periodic function 
X E  RI, t~ RI.  Our motivation is to study the existence of an infinite heirarchy of 
conservation laws on M. For this purpose we study the asymptotic solution of the 
adjoint equation of (4), denoted as cp E T * ( M ) ;  let ‘*’ denote the conjugate with respect 
to the standard bilinear form ( , ) on T * ( M )  x T ( M ) .  Now K ’ * :  T * ( M ) ;  
K ‘ * :  T * ( M ) +  T * ( M )  has the form 

and we have, for the equation adjoint to (4), 

(P, + K’*Q = 0. 

The solution vector (P has the form 

where k is a complex parameter, X,E RI is a chosen point and 

a(x,  k) = Uj[U, v1k-J 
(9) 

j c  z+ 

b(k) = 1 bj[u, v]k-’. 
j =  - l . r+  

Substituting (8) and (9) into (7) and equating various powers of k-J we get 

(10) 
I 

~ j , ~  dx =-vaj,-] - ~j = bj, - bj+l -C bj-pi 

If we solve (10) and (11) recursively we then get 

a,= -id3 v 

o,=;d3vx-;u 

u2 = - id3 U,, + tu, + ;vux - id3 uu 
- - 3  (12) 

3 - 4( -$a V, + 2U, + $ U; + 2VVx, - 2 d3 UV, - 2& VU, + $ U 2  - $ V 2 V x  + $V2U) 

a 4  = - ;(a U,V, +$A 0;v - 9uvv, + $8 UU,, + ;a u2v + id3 v2vxx 

- ~ v 2 u , + ~ d 3  v3u+;d3 uu,)+total derivative terms 
as have already been analysed in many situations; the quantity jz” a(k, U, U) dy is 
connected to the time derivative of the scattering data u(k), and from the inverse 
scattering transform we know that aula? = 0, hence U(&, U, U )  generates the whole 
hierarchy of conservation laws so that a,, a,, u3 etc are the conservation laws in the 
present situation. The same procedure has been followed by Chen and Lee [4]. It is 
quite obvious that we can generate an infinite number of conservation laws for the 
nonlinear system. 
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We now turn to the Hamiltonian analysis of this system on the manifold M. We 
suppose that there exists an implectic and Noetherian operator, 2' : T*( M )  + T(  M )  
such that 

( : :)=-OgradH=K(u,u) 

where the functional H is necessarily a conservation law. This implectic operator 
satisfies 

Lft - 2'K'* - K ' T  = 0 (14) 

a necessary condition of being Noetherian. Before we proceed with the actual computa- 
tion of 2' we here collect some information about the Hamiltonian machinery. Let us 
suppose that the manifold M = SOS. S being the Schwartz space of C ( a )  functions 
on the real line. Let M* denote the dualon M, with pairing defined as 

aa 
-+[K,u]=O. 
at 

A field J (  U, U) : M + M* is called symplectic if it is antisymmetric with respect to (( , )) 
and if the Jacobi identity holds for the bracket 

((XI 9 x2 Y X,)) = (J'[X,lX, Y XJ (17) 

and a field 0 is implectic if 0 is antisymmetric with respect to (( , )) and if the Jacobi 
identity holds for 

((XT, x:, XT)) = (XTY 0'[0x:]x:>. (18) 

Lastly an operator A is called a recursion operator if 

A'[ K ]  - K'A + AK' = 0 

and it is called a hereditary operator if and only if it satisfies 

A'[M-lg - A'[Aglf= AM'[flg - A'[glf) 
where A'(u)[f] denotes the Gateaux derivative, equal to 

d/de{Nu + & f ) ) l e = O .  

We derive the di-Hamiltonian structure via a new approach. Then from the two 
symplectic operators we construct the operator A and then check explicitly that the 
properties (19) and (20) hold in our case. 

We now use the small amplitude asymptotic method to solve equation (14). We 
set; U = &U('), U = &U('), with E -$O a small parameter. Then k' and K'* have the 
following structures: 
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On the other hand our ansatz for 3' reads 

O=90+&3'1+&292+. * * 

In the present situation 

Substituting (22) into (14) with (23) we get: 

cpIo'+ K&*cp'o' = 0 

etc, where we have also considered the vector cp") in the series form. Our chief 
motivation is to solve equations (24) and (25) by the approach of a Fourier expansion 
for 20, .fe, etc. 

To gain a solution for L f l ,  z0 let us start with equation (24) and insert the Fourier 
expansions 

whence equation (24a) immediately suggests 

and (24b) reads 

t l r  = - f a 3 &  
tZ1 = -a t l  

when we set 

From (27) a very easy solution to (28) can be seen to be 

5, = a Q p  6 2  = acpy 
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It is interesting to observe that with the previous solution for cp'p', pio) equation (30) 
reduces to 

(32) y I , -  - - 1 3  3aY2 Y2,=-aY1 

The simplest solution to (31) is Yl = Y 2 = 0  and no other solution is interesting as it 
becomes identical to that of (& , t2), so one implectic operator is obtained as 

*=--( 4 0  a ). 
9 a  o (33) 

This operator also occurs in the case of the Boussinesq equation. 

Hamiltonian form: 
So, we have observed that the original nonlinear equation can be written as a 

Now it is very pertinent to observe that equation (24a) and (24b) can also have other 
types of solutions. For which it is essential that we start with a different form of 20. 
It is easy to observe that another solution for so is given by 

We now use this in (30) and solving (30) we can manufacture another form of 
Let us set 

so that this time the equation for (xl,x2) reads 
(1) (0 )  (1) ( 0 )  (1) (0 )  

x 1 t + h 2 - = - f ( u  cP1x)--i(o rPl,+U cp2X)X 

X 2 r + X 1 x = - ( U  c p l X + U  cp2x)x-(u cp2x)x. 
(1 )  (0 )  (1 )  ( 0 )  (1) ( 0 )  (36) 

Using the Fourier expansion technique as mentioned above we can immediately obtain 
a solution of the form 

x1 -[' 211, ( I ) +  ,(l)d]cp\o) - [ ~ u ' " a ]  cp io) 
x2 = - [ f~"'a+fv; ' ]cpy '  (37) 
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whence we get 

The total implectic operator (the second one) turns out to be 

It is then straightforward to verify that 

giving the second Hamiltonian structure. 
Once we have the information about the bi-Hamiltonian structure of a nonlinear 

equation it is quite easy to construct the symmetries associated with it. From equations 
(40) and (39) we can immediately write down the recursion operator for symmetries 
in the form 

The set of equations given by (I) ,  being translation invariant both with respect to space 
and time, have the starting symmetries 

and the general nth-order symmetry is given as 

It is now interesting to note that the present set of equations does admit explicit 
(x, t)-dependent symmetry also, an example of which is 

To=( tu, - 1 ) = t s , - T - ,  

with T-' = (-:). So, a heirarchy of symmetries can be written as 

T, = rAn-'Sl -A"- 'T- ,  

= tS,, -An-'T-l 

(43) 

which depend explicitly on space and time. 
Our above analysis has generated two symplectic operators for the higher-order 

water-wave equation. We can verify two crucial properties of the recursion operator 
A = M Y '  constructed out of these. Firstly, it is easy to verify that 

and a detailed and laborious calculation immeciately shows A ' [ K ]  = [K', A] along 
with A ' [ f ] g  - A ' [ g ] f =  A ' [ A f ] g  - A ' [ A g ] f  for two arbitrary component vectors f and 
g. So our operator A is both hereditary and strong. 
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In our analysis we have deduced the bi-Hamiltonian structure, recursion operator 
and two heirarchies of symmetries for the higher-order water-wave problem using the 
method of Fourier expansion and small amplitude expansion. Our approach is more 
straightforward than that of the functional technique used by some authors for discuss- 
ing the hereditary and master symmetries of nonlinear integrable PDE [ 6 ] .  Usually 
some amount of guesswork is needed to proceed with the master symmetry approach 
though the results obtained are quite elegant. On the other hand in the present 
formalism we can construct the recursion operator first then the whole procedure 
becomes very simple. Lastly it is shown that explicit verification of strong and hereditary 
characters for the operator A can be carried out. 
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